If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11m^2+45m=0
a = 11; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·11·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*11}=\frac{-90}{22} =-4+1/11 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*11}=\frac{0}{22} =0 $
| 2+4g=3g+4+3 | | 25(1)y-5(1)+8=38 | | 4=-3–1u | | 7x2x=10 | | 3-10v=-5-2v | | 2c-3c=5 | | 7p-9=-3+9p | | -7y=6-10y | | j+16=47 | | X-x+10=10 | | 4x+14x=0 | | -h=2-3h | | 8g-7=9g | | f(5)=4(5)+7 | | -16t^2+30t+6=7 | | -9s-6=-10s | | 5x^2-3x-22=0 | | X+x+3x-x=8 | | 4x=1x+7 | | -10=-1a-8 | | 0=-5n-2n0 | | 1/9p=-2 | | (x+3)+6(x-3)=4x | | 4(g-1)=10 | | 3x-36=20+x | | 3+x+x=11 | | t=5=16 | | 6y-9=4y+15 | | 8u+22=3(u+9) | | 6y-9=4y=15 | | -7(z-60)=-70 | | 2x+1+3x−3+9x=180 |